{ "cells": [ { "cell_type": "markdown", "id": "a6919f84", "metadata": {}, "source": [ "# Sample code (eds)\n", "\n", "This page contains sample code to start an EDS analysis with a specified detector and acquire Spectrum data.\n", "\n", "The packages used are eds, detectorext." ] }, { "cell_type": "markdown", "id": "49909ccc", "metadata": {}, "source": [ "The functions to be introduced are as follows\n", "\n", "- Get a list of detectors that can be controlled\n", "- Get or set a detector information\n", "- Image capturing\n", "\n", "Prerequisites\n", "\n", "- DetectorService is running (in the case of online)\n", "- Femtus is running (in the case of online)\n", "- Ver.1.3.0 (Operation check environment)" ] }, { "cell_type": "markdown", "id": "aa96f044", "metadata": {}, "source": [ "## 0. Import TEM3\n", "*** " ] }, { "cell_type": "code", "execution_count": 1, "id": "b4c41d08", "metadata": {}, "outputs": [], "source": [ "from PyJEM import detectorext\n", "from PyJEM import eds\n", "\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "id": "367c0818", "metadata": {}, "source": [ "## 1. Select a detector" ] }, { "cell_type": "code", "execution_count": 2, "id": "8370ffa0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'status': 'OK'}" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "detectorext.function.assign_channel('HAADF', 1)" ] }, { "cell_type": "markdown", "id": "1a62d6ff", "metadata": {}, "source": [ "## 2. Place annotations" ] }, { "cell_type": "code", "execution_count": 3, "id": "893fba41", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'status': 'OK'}" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "args = {'LUTScanSetting': {'LookUpTable': '[]',\n", " 'Shape': 2,# Line=2, Square=3 \n", " 'Position': [[-1, -1], [1, 1]],\n", " 'PixelResolution': 2,\n", " 'IgnorePixelCount': 0,\n", " 'BlankingCount': 0}}\n", "\n", "detectorext.set_LUTscansetting(args)" ] }, { "cell_type": "markdown", "id": "9ed5a57b", "metadata": {}, "source": [ "## 3. Set EDS parameter setting." ] }, { "cell_type": "code", "execution_count": 4, "id": "0722c15f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'ProcessTime': ['T1', None, None, None],\n", " 'DwellTime': 1000.0,\n", " 'CollectionMode': 3,\n", " 'SweepCount': 0,\n", " 'EnableScanSync': False,\n", " 'EDSSelected': True}" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "args2 = {'ProcessTime': ['T1', None, None, None],\n", " 'DwellTime': 4700.0,\n", " 'CollectionMode': 3,\n", " 'SweepCount': 1,\n", " 'EnableScanSync': False,\n", " 'EDSSelected': True}\n", "\n", "eds.set_acquisition_settings(args2)" ] }, { "cell_type": "markdown", "id": "a7bbff16", "metadata": {}, "source": [ "## 4. Start acquisition" ] }, { "cell_type": "code", "execution_count": 9, "id": "4048655b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'Version': '08', 'DataID': 'e6b698ec-4209-44ba-a0ea-be3ebb507993'}" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_id = eds.start_acquisition()\n", "data_id" ] }, { "cell_type": "markdown", "id": "0da796e1", "metadata": {}, "source": [ "## 5. get_spectrum_data" ] }, { "cell_type": "code", "execution_count": 10, "id": "0f248400", "metadata": {}, "outputs": [], "source": [ "binary = eds.get_spectrum_data({\"TargetDataID\" : data_id[\"DataID\"]})" ] }, { "cell_type": "markdown", "id": "6d494461", "metadata": {}, "source": [ "## 6. Output as graph" ] }, { "cell_type": "code", "execution_count": 11, "id": "9f91f605", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjNElEQVR4nO3deXgb5b0v8O9PdpyV7E4I2ZyUAA2E1YUAPbT3sgTC4QBlaWhL0156ck8fyukp7ekNpaflLlxSTgstWyEsJRCWpjSQsAQIJgQCWXA2sjiJTVYnju1sjhPHtiz9zh+akUajkSxp5Ggy+n6eh0fSLNLrwfnq9W/eeUdUFURE5C+BfDeAiIhyj+FORORDDHciIh9iuBMR+RDDnYjIh4rz3QAAGDx4sJaVleW7GUREJ5SVK1fuU9VSp3WeCPeysjJUVlbmuxlERCcUEdmRbB3LMkREPsRwJyLyIYY7EZEPMdyJiHyI4U5E5EMMdyIiH2K4ExH5UKfhLiLPiUiDiKy3LBsoIgtFpNp4HGBZd4+I1IjIZhGZ1FUN95plW/ejpuFIvptBRAQgvZ778wCuti2bDqBCVccBqDBeQ0TGA5gC4ExjnydEpChnrfWwKTOX4YqHFue7GUREANIId1X9GMAB2+LrAcwyns8CcINl+auq2qaq2wDUALgwN00lIqJ0ZVtzH6qqdQBgPA4xlg8HsMuyXa2xLIGITBORShGpbGxszLIZRETkJNcnVMVhmeN9/FR1pqqWq2p5aanjvDdERJSlbMO9XkSGAYDx2GAsrwUw0rLdCAB7sm8eERFlI9twnw9gqvF8KoB5luVTRKS7iIwBMA7ACndNJCKiTHU65a+IvALgmwAGi0gtgN8CmAFgjojcAWAngFsAQFU3iMgcABsBdAC4U1VDXdR2IiJKotNwV9Xbkqy6PMn29wO4302jiIjIHV6hSkTkQwx3IiIfYrgTEfkQw52IyIcY7kREPsRwJyLyIYY7EZEPMdyJiHyI4U5E5EMMdyIiH2K4ExH5EMOdiMiHGO5ERD7EcCci8iGGOxGRDzHciYh8iOFORORDDHciIh9iuBMR+RDDnYjIhxjuREQ+xHDPga2NR/LdBCKiOAz3HNhS35zvJhARxWG454BqvltARBSP4U5E5EMM9xxgx52IvIbhngMsyxCR1zDcc0DZdycij2G450CY2U5EHsNwzwHJdwOIiGxchbuI/ExENojIehF5RUR6iMhAEVkoItXG44BcNdarwkbRvaSY35VE5A1Zp5GIDAfwrwDKVfUsAEUApgCYDqBCVccBqDBe+1p7RxgA0J3hTkQe4TaNigH0FJFiAL0A7AFwPYBZxvpZAG5w+Rme12EU3YsDLNAQkTdkHe6quhvA7wHsBFAHoElV3wcwVFXrjG3qAAxx2l9EpolIpYhUNjY2ZtsMTwiGIj334iL23InIG9yUZQYg0ksfA+AUAL1F5Hvp7q+qM1W1XFXLS0tLs22GJwRD7LkTkbe46WpeAWCbqjaqahDAXACXAKgXkWEAYDw2uG+mt3UYPfeAMNyJyBvchPtOABNFpJeICIDLAVQBmA9gqrHNVADz3DXR+0LGaJkAqzJE5BHF2e6oqstF5DUAqwB0AFgNYCaAPgDmiMgdiHwB3JKLhnqZOf2AcMQ7EXlE1uEOAKr6WwC/tS1uQ6QXXzBCxmgZltyJyCtYSMgB8yImYc2diDyC4Z4DYU4uQ0Qew3DPATPblXP/EpFHMNxzwCzLMNqJyCsY7jlgDoVkx52IvILhngNmqPOmHUTkFQz3HDCHQobDeW4IEZGB4Z4DYdZjiMhjGO45YA6F5GgZIvIKhnsORIdC5rcZRERRDPcc4GgZIvIahnsOaHScO9OdiLyB4Z4DoTB77kTkLQz3HGDNnYi8huGeAxwtQ0Rew3DPgTBPqBKRxzDcc4BlGSLyGoZ7DsSGQjLeicgbGO45oJzyl4g8huGeAxwKSURew3DPAd6JiYi8huGeA9GhkHluBxGRieGeAxwKSURew3B3qTUYwqLNjQBYliEi72C4u9R0LBh9zmgnIq9guLsklufsuBORVzDcXRKJxTun/CUir2C45xB77kTkFQx3l6wnUZntROQVDHeXwtZEZ7oTkUe4CncR6S8ir4nIJhGpEpGLRWSgiCwUkWrjcUCuGutFIUvPvT0UzmNLiIhi3Pbc/wTgXVU9A8A5AKoATAdQoarjAFQYr30rHI7vrn9S3ZinlhARxWQd7iLSF8BlAJ4FAFVtV9VDAK4HMMvYbBaAG9w10dvCtrOo63cfzlNLiIhi3PTcxwJoBPAXEVktIs+ISG8AQ1W1DgCMxyFOO4vINBGpFJHKxsYTt7cbZp2diDzITbgXAzgfwJ9V9TwAR5FBCUZVZ6pquaqWl5aWumhGftl77kREXuAm3GsB1KrqcuP1a4iEfb2IDAMA47HBXRO9zV5zF0myIRHRcZR1uKvqXgC7ROR0Y9HlADYCmA9gqrFsKoB5rlrocSzLEJEXFbvc/y4AL4lICYCtAH6IyBfGHBG5A8BOALe4/AxPs5dlWKUhIi9wFe6qugZAucOqy92874kkZOu6H2ppz1NLiIhieIWqS/ae+lMfb81PQ4iILBjuLnG0DBF5EcPdpRDDnYg8iOHuEm+tR0RexHB3iXOFEZEXMdxdYs2diLyI4e4Sw52IvIjh7lKYZRki8iCGu0vsuRORFzHcXWK4E5EXMdxdYrgTkRcx3F1izZ2IvIjh7hKvUCUiL2K4Z2nH/qP4w/ubE27WQUTkBQz3LN0xqxKPfliD7ftb8t0UIqIEDPcstXWEAPCEKhF5E8PdJXPisGmXjc1zS4iIYhjuWTI77GbJ/dQhffLXGCIiG4a7S2ZZpkgkzy0hIophuGfJ3nMP8EgSkYcwktwyUl7AnjsReQfD3SWz515SzENJRN7BRHLJrLlfMHoAAOAfxg3OZ3OIiAAw3LNmDoE0px8IiGDUwF4Y1Lskn80iIgLAcHctFDJGywQEIgAvaSIiL2C4Z8kM8Y6w2XOP9N55wSoReQHD3aWQEe4ikfEynI6AiLyA4Z6FuqZjqGtqBRDruRcFBGBZhog8guGehRXbDkSfhy1lGQGY7kTkCQx3l2I1d4GIQJnuROQBrsNdRIpEZLWIvGW8HigiC0Wk2ngc4L6Z3hUy7rMXEEFAeNs9IvKGXPTcfwqgyvJ6OoAKVR0HoMJ47Ull09/Gj2evdPUe9tEyPKFKRF7gKtxFZASAawE8Y1l8PYBZxvNZAG5w8xldbcH6vRnvI5YZIEOWssxJPYrR3NqRs7YREWXLbc/9jwB+CcBajBiqqnUAYDwOcfkZnhbtuQcE/XqW4GBLe55bRETkItxF5B8BNKhqVnUNEZkmIpUiUtnY2JhtM/IuFFYEjI58SbFEe/JERPnkpud+KYB/EpHtAF4F8N9FZDaAehEZBgDGY4PTzqo6U1XLVbW8tLTURTPyqyOskTHuiEz7y5o7EXlB1uGuqveo6ghVLQMwBcCHqvo9APMBTDU2mwpgnutWelg4rLEaPC9iIiKP6Ipx7jMAXCki1QCuNF77Vkc4HC3LcG4ZIvKK4ly8iap+BOAj4/l+AJfn4n1PBKGwRu+fKohNBUxElE+8QjUL1hvqtXeEETDCPSCxOzMREeUTw92lgy1BREvunH6AiDyC4e7SwaPtsdEynH6AiDyC4e5Sm6UsI3EFGyKi/GG4ZyFgmX6gPRRGIGCtubMsQ0T5x3DPQkCcX4uAQyGJyBMY7lmwj4iJjZbhFapE5A0FG+5uxqPbAzxac+cVqkTkEQUc7tnvmxDuxlEUEV7ERESeULDh7qZ8krTnDtbcicgbCjjcXexrG8teZKm5M9uJyAsKNtzdXEkasnXPxTJahidUicgLCjfcXWSwva5uHS3DbCciLyjYcLf2sNs6QhnuG/+6yDLwnT13IvKCAg732POquuYM943s3K9nNwCxG2YHOBaSiDyigMM9lsKtwQx77sY3Q7eiyOErig6FZM+diLyhYMNdLSNe2joym8rR7PV3L44cPut87ox2IvKCwg13Swy3ZdpzV7Pnbl6ZGntkz52IvKBgw91ac2/NsOcespdlOHEYEXlMAYd76p57RyiMSx6owGm/XpBQk1+29QAAoMRWlhFwKCQReQPDHc4194pNDdjT1Ir2jjBmL9sRt+6DqnoAsZ57fM2d6U5E+Vew4W7tYTuNlgmGYoGf7IRr/eHWuNfCG2QTkUcUbLh31nO3hr/9itSxg3sDAOqaIuG+bncTAPMKVaY7EeVfAYd77LlTuFvDP2RbPWFEP5QN6hV9Hb1BNthzJyJvKNhw105OqFo74PbhjWGNv49q7DZ7kvDeRET5UMDhHnvu1HOvaTgSfb6kZl/curAqLNkevUG2uYzZTkT5VrDh3tnEYdbwXrnjYNw6VY3rudtHzTDbiSjfCjjcY89bg4k9d0lYYtk3HF+WaWxui9uHV6kSUb4VcLjHAjhoP2MKxHXdzx3ZP2FfcUh/szzDbCeifCvYcLee9Hzri7qE9SHLvfRKT+oet85+QtWOPXciyreCDffOhix2WDawx7iqIuBw5FIFPhHR8ZR1uIvISBFZJCJVIrJBRH5qLB8oIgtFpNp4HJC75ubOmp2HUq7vCDmn/96mVlRsasD63YcT1pnZzp47EeWbm557B4Cfq+pXAUwEcKeIjAcwHUCFqo4DUGG89pxnlmyNe20fmx6y9NytYb218QiSCXAoJBF5RNbhrqp1qrrKeN4MoArAcADXA5hlbDYLwA0u29glhpzUI+71wo31ca87LDV3a4mmW3HyQyZGAYc9dyLKt5zU3EWkDMB5AJYDGKqqdUDkCwDAkCT7TBORShGpbGxszEUzMjLpzKFxr5/6OL4nby3LhJIU6G+fOBoAcM1ZJwOwXMSUq0YSEWXJdbiLSB8Afwfwb6qaWIhOQlVnqmq5qpaXlpa6bUbGgraaeq+SorjXcb31othhsgb9sP6R3v/oQZGJxKLTD2R27w8iopxzFe4i0g2RYH9JVecai+tFZJixfhiABndN7BrttrHt9nAPhRUDenUDAAzrFyvhWEsu5lOzxx6tubPvTkR55ma0jAB4FkCVqj5kWTUfwFTj+VQA87JvXtcJ2uaTGdQnfix7MBTGgF4lGNyne1xUW8vpQ4zx76cY4R+7QjXXrSUiykyxi30vBXA7gHUissZY9isAMwDMEZE7AOwEcIurFnaR9lAYIsCr/zwR3565DGOM0oopGAqjKCCRuyup88iZmy8Ygb49u+HKr0bq97ErVHOb7uFw5IpY4Th6IkpT1uGuqkuQfAqWy7N93+OlPRRGSVEAZ4/oDyC+xn6sPYT3NkRGzwzt2x2WgTNxvXIRwaQzT469dtjGrYbmVlx4fwXuv/EsfPei0bl7YyLytYK9QrWlLQQRRK80tfbIj7R1RJ8HROJq6OZ2j9x2XsJ7Rk+o5rDmvn1fCwDg9VW7c/aeROR/bsoyJ7QXjZteFxmBnGy4o/3uSmbJxXonpui2XXARk9ku825PRETpKNieu8kMTWu4W+d3F5G4sDYH2TjNIxOdz53hTkR5VvDhLhI5aWoN97vnrLWsdz6h6nRuc9nW/QCAD6rqE1dmKaQMdyLKXEGGu9kzv7BsIIBIcIYsAb5i2wEAwC+vPh2twRAOHQtG15lB79RzN8P9i9pDOWurOfUww52IMlGQ4T7+N+8BAKrqIhfUFgUEYYea+yn9emLfkXZ8uCl2HZa5mVPYXjA6MgFm2eDeCeuyZU6DUMxwJ6IMFGS4myWYZmNUTGswjL2HWxO2cyq9hKM998R1d/63UwEgYcy8G+bn7djfElceUlV8mWKGSiIqbAUZ7k7mrdmTsMzpoiGz5+60rrsxY2QwhwPdzfH31Q1H8Prq2HDI2ct24PI/LMbKHQdy9llE5B8M9xScCiFm+cap5l5sDJq33qLPLeuJ3g17YvOymRdZLdrUiKOWcflERADDPSWnAI8OTXRYZ9bhk93FKRvJxt8vqdkHAHhsUQ1uf3Z5zj6PiPyB4Z6CU81954HIFaM9ShIPXXFRZIdgSPH59tyUS5KFu9WqTm4ZSESFh+GegtNJ0z9VVAMAenQrSlhnlmWeWbIVtzy5FIs2uZ/tONWNuomIkim4cG9sbku6LhzWuBEpIoKpF49Gj26Jh6mnY7hH4ndr41EAQF1T4gicTHVY5p3npJBElK6Cm1vm2kc+iT6/2jKjIwAEw2HMt4yaCYg49tCB+LszmYqK4tPXYZOMteewfk9EhaPgeu4Nlp77//j6mLh1HSHFLqOmDkTKIEUBiat7/8O4wTh3ZH/H97ZfaOR0QjZTQUvP3bw1YK7ni/ejjXsO48vGIwiFFQvW1fGYUcEpuHC3Glsaf7FRR0jjatxnDu+L4oAgGIqVazpCim5FzqFt1txNuZgywHrHqNZgZNqE9zbsdf2+fjf5kU9w+R8WY/ayHfjxS6vw2srafDeJ6Lgq6HAfbL+1XjiMXQePRV8P69cTxUZtZdnWyOiXpVv3ozXoPI7d3nOft2aP42iX2oMt+KS6Ma02WnvuZrjvO9Ke1r751hEK4+8rax2ndjDVNBzJ2cgiJ+Z5j4YU51qI/Kigw92uI6R4c238lapm7/u2p5dF56JZt7vJcf9AQOJOei7e0ohXVuxM2O7Khz7G7c+uSKtN1pr72NI+ae3jFX/5dDt+/re1KXvNVzy0GLc8ubTL2mB+36b6giHyI1+He+X2A1iz61Cn2z1489kAgN2HjiWss4b1Ex992el72Uu7TZYZJU3HjB54OmPYrT33hxZugapmNGrmaFsHXl2x87jXnFfuOID736kCELlVYGcOHG3H3FXJvwQ6QmG8uGxH3PFIx3rjql5GOxUaX4f7zU8uxQ2Pf9rpdqMGRu6qtHzb/oR1b1jmc7H36tORajbHlx169Xb2MDOnHUjX/35zA6bPXYelWxN/tq50059jvfF0Rvzc9coq3D1nbdwJbauXV+zEf7yxHs9/ur3T97JOqPbxlkj5K8wTqlRgfB3upoqqepx27wKs3HEgGuRWF40ZiG5FgsPHOlBuTNtrOtoWStg+E8tsoXqsPfZ+TS2JtfPG5jbMNm4BCAAL1sefPF2962DcSdZk3t+wFxv2NGG/UZ9fu6sJb32R+ZdTNuzz2Vu/oDpCYTz98dbo+QPTpzWR49SepGfe1BL5C+jQsc7PN9jfG8jtTcuJTgQFMc79jlmVACK9yWH9eiSsFxEM6FWCg0fbE3p4bke8LNocf+L09+9vjj7vcEicu15ZhWVbD+DSUwdjzODeCRddNTa34fShJ3X6udNeXAkAuHL8UADA797dBAD4x7NPyewHyMI/PRb/11K75cto7urduP+dKjQdC+IXk05P2DfZ8NFM7k/rtA2HQlKhKYieu5U5esI+Vn1ArxL8tXJXtEY/1rjhRi5ukhEOKx5fVIP9R9riRsmYE4xt3tuMv36+E995ell0VE6ymR7TmQHSep7B3vwt9c14tKI6rXp/07Fg2tuaNu9tTlhmDXezF//cp9sc9092tM0plrON6GzKMqqKJxd/mdY5AyKvKYieuxN7j7xfz24ArPO1Rx5/c914/OAvn7v6rGXb9uM/39uMjXWHsaU+Vg82e+6T/vhxwj7JThy2BsOOs05GTrRGGm09z2DvCV/1cOSzTh3SB9dMGJay3fe/vRFzKmtx+skn4Srb1bzJdPaz9CiOXPHb0u5c7ursZHG2HfBsyjJVdc2YsWATllTvw+wfXZTdBxPlScH13E32Hm3QNge7GZQTxw7K6H2dyjib6iK92Q22IZRLahqxc7/zCcRPa/Y5DiFcvKURD763KWF5MKR4aOGW6AlEU7Kw/PFLq7BhT6Q9FVX1eHd9HTbuOYyy6W+jpuEIllTvw5zKyOdPe3FlXHnok+pG3PrUUqyrdR4Savfq57vw1OLISKPulnl6MimVmD/H+iTDUK2c3tZ6YjxdZv2/uQvny9996Bgeqah2PBZH2jrwwIKq6D1/u8q62ia8sHR7l34GHX8F23P/7XVnxr1ebZs218xo8+5K6QoIYP2n2KNbIHqD7e22ID+pezdMe7HS8X1+//6WpJ9hXsQ0ZnBvbNsXmaSsuTWIRyqqUWJrb6qJ0p746Es8/p3zo+ckzFLUFQ8tTtj2Ry9UYt6dlwJAdIz+dY8twfYZ1yZ9f6sHFmzC1EvK4ubkOeZw4jNZCcj8C8Scxz4VdSjeZDOJW6pbKubKv7y4Eut2N2HyhGE4dUj8dQyPfViDpxZvxSn9emLqJWVd1obrHlsCAPj+xV33GXT8+bbnnqpX+MV9V+Gs4f1S7i9G9dfpdnop97NtP35YX8fRGwDQ0t6BTQ41arsfXlrmuHz+Ty7F/TeeBQB4dkmkht1uG0mTarTPwg31eHxRTfT1VuOLwsnaFNcLqCoueaAC13cy7PRoW0fcxUROV/qGVdHUEsRv5q1PetxMr6+uxbvr6xza47z9va+vw6/fWId62/1y566qxW0zl8WNbGpqCeJbT3wGoPM5gppagviPN9bjWHsIwVAY1z26BDMWJP51ZVfT0Gy5IC6x0eaMoF3Zc7eWzJyu86ATl2/DfU+KnlqvJDM9WqX69/yXH3wt6bqXbbXZUFhxyGHIIwAcSLLcLtlJ3W5FgWgNO9kFVpNS1MrbQ2H853ubk65P17Z9R7GnqTXlFwAQ+aKx3l/WuecOPLRwM15YugNzV8VKKW0OXwQ/++ta/MvsVYnvkSTdX1q+E7OX7cT/eWtj3PK756zF0q37MWXmsuiyhz+I/eXU2df7wx9swYvLduD11btRUVWPdbub8OTizi94+94zqa9SNkt8GV63lZHFltFcv3xtbdd9EB13vgv3l5fvxG/mrcelMz5Muk1xGnPxpuqxf/P00qTryssGxpUq1tY2xd3Y2mrXgfR6SkUB5/Z2KwoklGHsrCHVVazz8aRSueNA3Pz0Ly/fkbDNLU9+hvnGxWLvrIv1yl9fHTv/0N4Rxh3Px05y/3j2SpRNfxuzPtuOf//bWrz9RWJv3sq6PlkZyNpbrtxxEP/P9oVgqj/ciuc/2w4AeP6zbbhn7rrouiOd1OqbW2NXLzt9H5kjitK9J+/cVbUom/523EVcndlYF7svbyajosj7fBfuv3p9HV5YmhganXnrrq/HvX7iu+cn3TbTUk3Q5ZzsyXruRQGJ3vavMzO+NcFVG1L5+ZzEHt8Eh7LX3XPWxpWNHl+U2Ls93NqBg8YFS9b6uvV8xe5Dx1BhucuVeaHXb+dvwN9W1kZLVOmobnAui9n/UngmyXs++G7sL58t9UeibQeAVzu5AvmoZcSQ02+I+XuTbs/9buP/w7++sjq9HRCZ0sKUiymqyTu6LNxF5GoR2SwiNSIyvas+x2p5GpfY22/QYTpreD98+PNvGM/7Yszg3o7b5UMgxRm9ZNMP2914/vBcNSfBviOJJ22TzXnfWR09HV82pN8zzdbR9sRet9M1Bqmug8jkSz3VnDnp/PW111KGPJZkmGlnGO7+0iXhLiJFAB4HcA2A8QBuE5HxXfFZVh9UOc+78surY1dC/uzK05LuP3JgL9xaPgL/9/qz4pY//O1z8Kcp52bUlv9/44SkJ0KnXjwaD950dtrv1bukCL++9qs4f1T/hHXfmzg6rfcoEsEvrkr+s6diza90T+797MrTcPvE0Zg4dmDc8mNJpkvOxBtrMh/WmEyyUoS1B256d33iPPpjSpN3Auwnt1NxunYhfn3q91qz62D0udO5jGRuvmBE9Dmz3V+kKy7LFpGLAdynqpOM1/cAgKo+4LR9eXm5VlY6DwlMZdPew7jr5difoA3NbQmzMP7upgn49tdGoWz62wCQ9tA9u3BYMfZX76BbkaD6/slp72d+7qO3nYe7jD+Xt8+4Ftv3HcU3f/9RWu/x4E1n49avjcSKbQdw61OxCbnMn8X8DKuAxF+4s+2ByRARx20788NLyzDrs+34SmkfhFSj94gFgHFD+qDaoSdttu35T7fhvjdj9epBvUuw/2j689GPM4YHWj+jpCiQdA4a0zVnnZwwL4/T+7Z2hOLOfTh9nql3SRFO6d8zbtnBlvaU8+uPG5J8mmbrZ4wY0DPhvrzW9WNLe6MoRfoebg2i/nDsL6hUn2tl/zeT7n6UO988vRT3Xptd31dEVqpqudO6rhrnPhzALsvrWgBxw0hEZBqAaQAwatSorD6kR3ERxg2N/TKOG9oHH1Q1IBgKQxU4Z2T/6GiRl//5ItQdyv4y8kBA8KvJZ+Abpw3JaL+nv1+Of39tLSadeTIe+8556F0SOeSjB/VC2aBeOHtEfxxsaUfvkmJcMHoAvjZmIP78UQ0mTxiGfUfasX53Ey47LXIC94LRA3DdOafgzbV78L+uPiP6GVeNH4r3N9bjK6W9oQBK+3TH7246O/rl8YNLyqLnCaZfcwYOHm3HwZZ2zF21G0NO6o49Ta0Y1q8HvnX+cNxw7nBc+fDHuPmCEdjb1IrvXjQKw/r3RENzW2x4qUaGTU4Y3g8jB/bEqIG94mrgz/0g9rs25cJRePqTbbi1fCRqGo8gFA5j7OA+ePOLPTjUEsSZp/TF6EG98MqK2K/Lmaf0xYY9hzF5QqyE1tIeig7Vu2L8EKzYdgD7jrTj5L49sPdwK84Z0Q/DB/TEO+v2Ynj/npjxrbMxYkBPtAbD+O7EUbj6j7F7557Uozju98YM99OG9omONR9b2huLNjXif35jLB79MDJc9LLTSh17t2WDInMA/W1lbdyX3TVnnZyyNzy0b4/oeYWzRySeo9i+/2i0tHPGyZ3PJ/TOusiX2dVnnowk5+ATjBvaB8P69cSsz7bjyvFD2XvPg6F9E+e7yoWu6rnfAmCSqv7IeH07gAtV9S6n7bPtuRMRFbJUPfeuOqFaC2Ck5fUIAMdnvlkiIuqycP8cwDgRGSMiJQCmAJjfRZ9FREQ2XVJzV9UOEfkJgPcAFAF4TlU3dMVnERFRoi6bOExV3wHwTle9PxERJee7K1SJiIjhTkTkSwx3IiIfYrgTEflQl1zElHEjRBoBZD6VY8xgAJ3food4nNLD45Q+Hqv0dNVxGq2qjnOQeyLc3RKRymRXaVEMj1N6eJzSx2OVnnwcJ5ZliIh8iOFORORDfgn3mfluwAmCxyk9PE7p47FKz3E/Tr6ouRMRUTy/9NyJiMiC4U5E5EMndLjn4ybcXiYi20VknYisEZFKY9lAEVkoItXG4wDL9vcYx26ziEzKX8u7nog8JyINIrLesizjYyMiFxjHuEZEHhHx172Lkhyn+0Rkt/F7tUZEJlvWFepxGikii0SkSkQ2iMhPjeXe+Z1S1RPyP0SmEv4SwFgAJQDWAhif73bl+ZhsBzDYtuxBANON59MB/M54Pt44Zt0BjDGOZVG+f4YuPDaXATgfwHo3xwbACgAXAxAACwBck++f7Tgcp/sA/MJh20I+TsMAnG88PwnAFuN4eOZ36kTuuV8IoEZVt6pqO4BXAVyf5zZ50fUAZhnPZwG4wbL8VVVtU9VtAGoQOaa+pKofAzhgW5zRsRGRYQD6qupSjfyrfMGyjy8kOU7JFPJxqlPVVcbzZgBViNw72jO/UydyuDvdhHt4ntriFQrgfRFZadyAHACGqmodEPmFBGDe4ZvHL/NjM9x4bl9eCH4iIl8YZRuz1MDjBEBEygCcB2A5PPQ7dSKHu1NdqtDHdV6qqucDuAbAnSJyWYptefySS3ZsCvWY/RnAVwCcC6AOwB+M5QV/nESkD4C/A/g3VT2calOHZV16rE7kcOdNuG1UdY/x2ADgdUTKLPXGn34wHhuMzXn8Mj82tcZz+3JfU9V6VQ2pahjA04iV7wr6OIlIN0SC/SVVnWss9szv1Ikc7rwJt4WI9BaRk8znAK4CsB6RYzLV2GwqgHnG8/kApohIdxEZA2AcIid2CklGx8b4M7tZRCYaIxq+b9nHt8ywMtyIyO8VUMDHyfi5ngVQpaoPWVZ553cq32edXZ6xnozIWeovAdyb7/bk+ViMReRs/FoAG8zjAWAQgAoA1cbjQMs+9xrHbjN8NprB4fi8gkhJIYhIb+mObI4NgHJEwu1LAI/BuMrbL/8lOU4vAlgH4AsjpIbxOOHriJRPvgCwxvhvspd+pzj9ABGRD53IZRkiIkqC4U5E5EMMdyIiH2K4ExH5EMOdiMiHGO5ERD7EcCci8qH/Al9QrH8PrPEWAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Divide binary data into 4-byte units\n", "binary_intensity_list = [binary[i:i+4] for i in range(0, len(binary), 4)]\n", "\n", "# Transfer binary data to int.\n", "intnum = []\n", "for intensity in binary_intensity_list:\n", " intnum.append( int.from_bytes(intensity, byteorder=\"little\"))\n", "\n", "# Drawing on graphs (EDS Spectrum)\n", "%matplotlib inline\n", "plt.plot(intnum)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 5 }